
TWAIN 2.4 Self-Certification Process for Data Sources 1
TWAIN Working Group

TWAIN Self-Certification

Process for Data Sources
For Version 2.4

February 14th, 2018

TWAIN 2.4 Specification 13-1

13
TWAIN Self-Certification Process for

Data Sources

Chapter Contents

Overview

Non-Goals of Basic TWAIN Self-Certification

Affirmation of Successful Completion of TWAIN Self-Ce

TWAIN “Congratulations” Webpage

TWAIN Self-Certification Tests

TWAIN Standard Capability Tests

Vendor Custom Capability Tests

Status Return Tests

Stress Tests

Non-UI Image Transfer Tests

UI Image Transfer Tests

CAP_XFERCOUNT Tests

Version Tests

Verify Values For MSG_RESETALL and MSG_RESET

The TWAIN self-certification system helps developers test their data source’s support of the
basic interface described by the TWAIN Specification. Passing the test helps to confirm that
the data source’s interface works as expected with applications, leading to a better user
experience.

This document provides the Test Plan for TWAIN self-certification for data sources. It also
describes how to submit a form affirming successful completion of the test to receive
authorization to display the “TWAIN Certified” logo.

Chapter 13

13-2 TWAIN 2.4 Specification

Overview

The TWAIN interface operates between an application and a data source. The nature of this
interface is described by the TWAIN Specification.

Basic TWAIN self-certification exercises specific portions of the TWAIN interface and behavior
of the TWAIN interface that all data sources are required to support. Passing these tests
confirms that a data source correctly follows the TWAIN Specification, when responding to
commands sent by an application, and that it does not crash or hang.

This is not a comprehensive test of the entire TWAIN interface. It focuses on enforcing basic
“good behavior”. More stringent tests may be described in future.

The basic self-certification test is limited to the kinds of checks described in this document.
Modifications may be made in association with new versions of the TWAIN Specification (for
instance, the addition of a new mandatory feature). For this reason self-certification is always
done in the context of a particular version of the TWAIN Specification (ex: 2.2).

TWAIN data sources with a protocol version of 1.9 or higher may be self-certified. The
version of this document is a measure of the kinds of tests performed on the data source.
Running the tests in this document does not certify a TWAIN 1.9 data source as TWAIN 2.2
compliant, rather the data source is self-certified as TWAIN 1.9 compliant using criteria
described inside of the TWAIN 2.2 Specification.

TWAIN data sources that have been self-certified will work correctly with any compliant
TWAIN Application reporting a TWAIN protocol version of 1.5 or higher.

TWAIN self-certification promotes the creation of 64-bit applications and data sources by
requiring simultaneous submissions of native 32-bit and 64-bit data sources for Windows Vista
or later, Macintosh OS X or Linux. A native 64-bit data source is one that interfaces with a
native 64-bit application. 64-bit applications cannot be run on 32-bit Systems. A 32-bit data
source running in any kind of virtual or thunking environment on a 64-bit Operating System
does not qualify as a native 64-bit data source.

TWAIN self-certification requires the presence of a TWAIN data source manager
corresponding to the version of the TWAIN data source or higher. If one is not pre-installed
on the operating system, then the TWAIN data source must install it.

Questions or comments regarding TWAIN self-certification should be referred to the TWAIN
Forum www.twainforum.org.

Non-Goals of Basic TWAIN Self-Certification

This is a test of the operation of the interface; it does not test the internals of the data source.

This test is not designed to catch data errors (ex: bad pointers, data corruption, array out of
bounds, etc) except in those instances where the error happens to cause the failure of some
other test.

TWAIN 2.4 Specification 13-3

Negotiated settings are not confirmed in the meta-data or images they produce (ex: did
changing ICAP_BRIGHTNESS really result in a brighter or darker image, was the proper print

string written on the document).

Constraints for TW_ENUMERATION and TW_RANGE are not tested (ex: limiting the

ICAP_PIXELTYPE enumeration to just TWPT_RGB, or limiting ICAP_BRIGHTNESS to a range

of -100 to 100).

Mandatory features for accessories are not tested (ex: there is no check to make sure that all of
the barcode features are properly supported if any one barcode capability is detected).

Affirmation of Successful Completion of TWAIN Self-
Certification

After TWAIN self-certification has been successfully completed the tester may submit an
“Acknowledgement of Successful Completion of TWAIN Self-Certification” form to the
TWAIN Working Group.

This can be accomplished in more than one way. The preferred method is to access the
TWAIN Working Group website (www.twain.org), and access the section titled “Scanner
Driver Developers.” Under there is the “Certify TWAIN Driver” link.

Alternatively, one can submit a notarized or a digitally signed form of the document

This form includes the following information

Company: The name of the company manufacturing the data source being self-certified, a
division within that company may be optionally provided. The submitter may also opt to
provide a URL to their company’s website which will link off of this name.

Hardware: The model name, model number and revision of the hardware used during
self-certification. This is marketing information identifying the device supported by this
specific TWAIN data source. In most cases this information can be found printed
somewhere on the device.

TWAIN Data Source Identity: Fields from the TWAIN data source’s TW_IDENTITY

structure, which indicate the manufacturer, family, product, and the version number,
uniquely identify the data source to the application. The TW_IDENTITY.ProductName
should be unique by itself, since this is the only field displayed by the data source
manager’s user select dialog on Windows.

TWAIN Data Source Version: The complete version of the TWAIN data source,
matching the .DLL version on Windows, and the .so file name on Linux and Mac OS X, this
version number matches the MajorNum and MinorNum fields from the data source’s
TW_IDENTITY.Version structure.

Installation: The name and the version of the installation media that includes this
TWAIN data source provides information the user needs to install the self-certified
TWAIN driver.

Operating System: The operating system’s name and revision (version number or service
pack) that was used during self-certification.

http://www.twain.org/

Chapter 13

13-4 TWAIN 2.4 Specification

Processor: The computer processor of the host machine used during self-certification,
examples include: x86, x64, IA64. This should match the native processor supported by
the TWAIN data source. For example, if the self-certification is performed for a 32-bit
TWAIN data source on Windows XP or Linux without a 64-bit data source, then the x86
processor should be used.

32-Bit / 64-Bit: When performing the self-certification test on Windows Vista or later, or
any version of Macintosh OS X, or Linux, the submitted form must indicate successful
completion using both a native 32-bit and a native 64-bit data source.

Email: The name and email address of a contact. This is initially used to deliver the
Logo, but it will also be used to help manage entries posted by the TWAIN Working
Group.

URL: The URL to the Installer for the TWAIN data source is a convenience for users
browsing the posted list of self-certified content. It is optional, but recommended.

Self-Certification Method: The submitter may specify the software used to perform self-
certification, when indicated this information is made available to users browsing the
posted list of self-certified content.

It is expected that multiple versions of the same driver will be submitted over the life of the
hardware product. Please be aware of the following:

Email address: The email address specifies the contact who receives the Logo for a
successful submission. This same email address must be used when submitting a new
instance of a previously submitted TWAIN data source, or when replacing an existing
submission. Requests using other email addresses may not be recognized by the TWAIN
Working Group.

Signature: There is no requirement for the same signature (notarized or digital) to be
used from one submission to the next, but pairing the same signature with the same email
address for all submissions for a given driver is appreciated.

Hardware: The model name and model number uniquely identifies the hardware
supported by the TWAIN data source. Submissions of new TWAIN data sources for the
same hardware must take care to make sure that this information is identical from one
version to the next. If there is no exact match with an existing hardware entry, then the
entire entry is treated as new.

TWAIN Data Source Identity: The following fields uniquely identify the TWAIN data
source: TW_IDENTITY.Manufacturer, TW_IDENTITY.ProductFamily and

TW_IDENTITY.ProductName. When updating a previously existing self-certified

TWAIN data source it is important to make sure this data is identical from one version to
the next. If there is no exact match with an existing TWAIN data source, then the entire
entry is treated as new.

TWAIN Data Source Version: Many vendors use a four field versioning system (ex:
1.2.0.1). The first two fields must correspond to the
TW_IDENTITY.Info.Version.Major and TW_IDENTITY.Info.Version.Minor

fields. The last two fields vary among vendors, and are not described here. The value
zero must be used for any unused field. If a submission has exactly the same email,
hardware, data source and version information as a previous submission, it will replace its
posting on the TWAIN Working Group website. If there is no exact match with an
existing TWAIN data source, then the entire entry is treated as new.

TWAIN 2.4 Specification 13-5

Operating System: The operating system’s name and revision (version number or service
pack) that was used during self-certification. If there is no exact match with an existing
TWAIN data source, then the entire entry is treated as new.

The TWAIN Working Group makes no attempt to enforce continuity of versions. If the
submission is correct, the version numbers may change in any way specified by the
submitter.

Submission of the form qualifies the data source and its associated hardware to display the
TWAIN Certified Logo. Submission information from the form is displayed on the TWAIN
Working Group website (www.twain.org).

Contact information is required to deliver the Logo; this includes the name of a contact and an
email address. This information will not be shared or made public. The form asks if the
email address may be used to occasionally send information relating to TWAIN or the TWAIN
Working Group.

The form must be either digitally signed or notarized. This identification is meant to
guarantee that the document has not been modified since it was signed. The form includes an
address where it can be mailed as a paper copy or emailed. The complete form is on the next
two pages.

Chapter 13

13-6 TWAIN 2.4 Specification

Form

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 1 of 2

Completion and submission of a digitally signed or notarized original of this statement to the
TWAIN Working Group authorizes the authorized representative or their company to display
the TWAIN Certified Logo on the hardware, software and marketing materials of the TWAIN
data source described below. All fields must be filled in, except where otherwise indicated.

The certification mark is intended for use by authorized entities or persons and is intended to
certify that this software conforms to standards designated by the TWAIN Working Group.
This document indicates compliance with the TWAIN Specification for version TWAIN 2.2 or
earlier.

The following information will not be published or shared. The Logo will be sent to the email
address.

Name of Contact: __

Email Address: __

May the TWAIN Working Group send TWAIN information not related to this
submissionto this email address? (circle one) [Yes] [No]

The following fields will be posted on the TWAIN Working Group website.

Company:

Division: (optional)

Company/Division URL: (optional)

Hardware Model Name:

Hardware Model Number:

Hardware Model Revision: (optional)

TW_IDENTITY.Manufacturer:

TW_IDENTITY.ProductFamily:

TW_IDENTITY.ProductName:

TW_IDENTITY.Protocol: ______. ______

TWAIN Data Source Version: ______. ______ . ______ . ______

Installer Version:

URL to Data Source: (optional)

TWAIN 2.4 Specification 13-7

Processor: x86 ___ x64 ___ other

Operating System/Revision:

Self-Certification Software: (optional)

May the TWAIN Working Group post the software used to self-certify? (circle one)
[Yes] [No]

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 2 of 2

Please confirm that all tests described within the “TWAIN Self-Certification Process for Data
Sources” document have been completely and successfully run (check all that apply).

32-bit 64-bit Test

 TWAIN Standard Capability Tests

 Vendor Custom Capability Tests

 Status Return Tests

 Stress Tests

 Non-UI Image Transfer Tests

 UI Image Transfer Tests

 CAP_XFERCOUNT

 Version Tests

 I attest under penalty of perjury to the fact that the information on this form is true and accurate.

 Signature of Authorized Representative Date

 Printed Name

Chapter 13

13-8 TWAIN 2.4 Specification

 Subscribed and duly sworn in my presence this ______ day of _______________
20___.

 Country of _________________ State of ________________________

 SS

 Notary Public Signature

 My

commission expires:

Mail the Notarized Document to:

The TWAIN Working Group
4256 Redspire Lane
Fayetteville, NC 28306 USA

- or -

Email the Digitally Signed Document to:

admin@twain.org

Sample Form

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 1 of 2

Completion and submission of a digitally signed or notarized original of this statement to the
TWAIN Working Group authorizes the authorized representative or their company to display
the TWAIN Certified Logo on the hardware, software and marketing materials of the TWAIN
data source described below. All fields must be filled in, except where otherwise indicated.

The certification mark is intended for use by authorized entities or persons and is intended to
certify that this software conforms to standards designated by the TWAIN Working Group.
This document indicates compliance with the TWAIN Specification for version TWAIN 2.2 or
earlier.

The following information will not be published or shared. The Logo will be sent to the email
address.

Name of Contact: __John Smith________________________________

Email Address: __twainselfcert@notarealcompany.com_________

May the TWAIN Working Group send TWAIN information not related to this submission

TWAIN 2.4 Specification 13-9

to this email address? (circle one) [Yes] [No]

The following fields will be posted on the TWAIN Working Group website.

Company: Not A Real Company

Division: (optional) Scanner Group

Company/Division URL: (optional) www.notarealcompany.com/scanners

Hardware Model Name: Business Scanner

Hardware Model Number: 123

Hardware Model Revision: (optional) 6.0

TW_IDENTITY.Manufacturer: Not A Real Company

TW_IDENTITY.ProductFamily: Business Scanner

TW_IDENTITY.ProductName: Not A Real Scanner: 123

TW_IDENTITY.Protocol: __2___. __1___

TWAIN Data Source Version: ___5___. ___3___ . ___0___ . ___0___

Installer Version: Not A Real Scanner: 123, CD v3.4.0.0

URL to Data Source: (optional) www.notarealcompany.com/scanners/123

Processor: x86 _x_ x64 _x_ other

Operating System/Revision:

Windows Vista / SP2

Self-Certification Software: (optional) Inspector TWAIN 3.1.14

May the TWAIN Working Group post the software used to self-certify? (circle one)
[Yes] [No]

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 2 of 2

Please confirm that all tests described within the “TWAIN Self-Certification Process for Data
Sources” document have been completely and successfully run (check all that apply).

32-bit 64-bit Test

Chapter 13

13-10 TWAIN 2.4 Specification

X X TWAIN Standard Capability Tests

X X Vendor Custom Capability Tests

X X Status Return Tests

X X Stress Tests

X X Non-UI Image Transfer Tests

X X UI Image Transfer Tests

X X CAP_XFERCOUNT

X X Version Tests

 I attest under penalty of perjury to the fact that the information on this form is true and accurate.

 Signature of Authorized Representative Date

 Printed Name

 Subscribed and duly sworn in my presence this ______ day of _______________
20___.

 Country of _________________ State of ________________________

 SS

 Notary Public Signature

 My

commission expires:

Mail the Notarized Document to:

TWAIN 2.4 Specification 13-11

 The TWAIN Working Group
 4256 Redspire Lane
 Fayetteville, NC 28306

 - or -

Email the Digitally Signed Document to:

 admin@twain.org

TWAIN “Congratulations” Webpage

Applications that automate the TWAIN self-certification process are asked to use the
“Congratulations” web page to complete the process. Hard coding the “Affirmation of
Successful Completion of TWAIN Self-Certification” may require updates to the application if
the TWAIN Working Group changes the document. Use of the web page avoids this problem.

The URL of the web page is:

 http://www.twain.org/self_certification_congratulations.shtm

TWAIN Self-Certification Tests

The tests are broken down into the following groups:

TWAIN Standard Capability Tests Exercise DAT_CAPABILITY operations for all standard

TWAIN capabilities reported by CAP_SUPPORTEDCAPS.

Confirm use of containers and supported operations.

Vendor Custom Capability Tests Exercise DAT_CAPABILITY operations for any vendor spe-

cific custom capabilities reported by CAP_SUPPORTED-

CAPS.

Status Return Tests Confirm that the expected status return is reported by cer-
tain operations.

Stress Tests Stress aspects of data sources that have been reported as
common problems.

Non-UI Image Transfer Tests Confirm that multiple MSG_ENABLEDS and MSG_DISA-

BLEDS calls can be made in the context of one MSG_OPENDS

/ MSG_CLOSEDS. This test focuses on image capture with
no UI.

Chapter 13

13-12 TWAIN 2.4 Specification

UI Image Transfer Tests Confirm that multiple MSG_ENABLEDS and MSG_DISA-

BLEDS calls can be made in the context of one MSG_OPENDS

/ MSG_CLOSEDS. This test focuses on image capture with

the UI.

ICAP_XFERMECH Test the ability of the data source to transfer the correct
number of images based on the value of ICAP_XFERMECH.

Version Test Confirm that the data sources responds correctly to differ-
ent TWAIN versions of data source manager and applica-
tion.

TWAIN Standard Capability Tests

Purpose

Exercise all of the TWAIN Standard capabilities exposed by CAP_SUPPORTEDCAPS using the

standard operations supported by DG_CONTROL / DAT_CAPABILITY.

Operations on capabilities (MSG_* values specified below) are assumed to be DG_CONTROL /

DAT_CAPABILITY, unless otherwise stated.

Pre-Test Procedure

Open the data source manager. It is required that when opened the data source is in the state it
would be in after being installed (e.g., no saved settings from previous sessions), to make the
test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Confirm Basic Negotiation with CAP_SUPPORTEDCAPS

Make sure that CAP_SUPPORTEDCAPS is working properly. Perform basic checks on how

well it supports negotiation.

1. Action: MSG_GET CAP_SUPPORTEDCAPS (get the list of capabilities to be tested)

1.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2. Test: If TW_CAPABILITY.Cap is not CAP_SUPPORTEDCAPS, then end with error

1.3. Test: If TW_CAPABILITY.ConType is not TWON_ARRAY, then end with error

1.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end

with error

TWAIN 2.4 Specification 13-13

1.5. Test: If TW_ARRAY.ItemType is not TWTY_UINT16, then end with error

1.6. Test: If TW_ARRAY.NumItems is equal to zero, then end with error

1.7. Action: Confirm the presence of the following capabilities in TW_ARRAY.ItemList

1.7.1. Test: If CAP_SUPPORTEDCAPS not found, then end with error

1.7.2. Test: If ICAP_PIXELTYPE not found, then end with error

1.7.3. Test: If ICAP_XFERMECH not found, then end with error

 Confirm Basic Negotiation with ICAP_PIXELTYPE

Make sure that ICAP_PIXELTYPE is working properly. Perform basic checks on how well it

supports negotiation.

2. Action: MSG_GET ICAP_PIXELTYPE

2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Test: If TW_CAPABILITY.Cap is not ICAP_PIXELTYPE, then end with error

2.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end

with error

2.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

2.6. Test: If TW_ENUMERATION.NumItems is equal to zero, then end with error

Confirm Basic Negotiation with ICAP_BITDEPTH

Make sure that ICAP_BITDEPTH is working properly, and doesn’t include invalid values for

commonly used pixel types.Make sure that ICAP_BITDEPTH is working properly, and doesn’t

include invalid values for commonly used pixel types.

3. Action: MSG_SET ICAP_PIXELTYPE to TWPT_BW

3.1. Test: If result is not TWRC_SUCCESS, then proceed to the TWPT_GRAY test

immediately below

3.2. Action: MSG_GET ICAP_BITDEPTH

3.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then

proceed to the TWPT_RGB test below

3.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value,

then end with error

3.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with
error

3.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 24, then end

with error

Chapter 13

13-14 TWAIN 2.4 Specification

4. Action: MSG_SET ICAP_PIXELTYPE to TWPT_GRAY

4.1. Test: If result is not TWRC_SUCCESS, then proceed to the TWPT_RGB test below

4.2. Action: MSG_GET ICAP_BITDEPTH

4.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then

proceed to the TWPT_RGB test below

4.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value,

then end with error

4.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with

error

4.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 1, then end
with error

4.2.5. Test: If the TW_ENUMERATION.ItemList includes a value of 24, then end

with error

5. Action: MSG_SET ICAP_PIXELTYPE to TWPT_RGB

5.1. Test: If result is not TWRC_SUCCESS, then proceed to the next test section

5.2. Action: MSG_GET ICAP_BITDEPTH

5.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then

proceed to the TWPT_RGB test below

5.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value,

then end with error

5.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with
error

5.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 1, then end

with error

Confirm Basic Negotiation with ICAP_XFERMECH

Make sure that ICAP_XFERMECH is working properly. Perform basic checks on how well it

supports negotiation.

6. Action: MSG_GET ICAP_XFERMECH

6.1. Test: If result is not TWRC_SUCCESS, then end with error

6.2. Test: If TW_CAPABILITY.Cap is not ICAP_XFERMECH, then end with error

6.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

6.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end
with error

6.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

TWAIN 2.4 Specification 13-15

6.6. Test: If TW_ENUMERATION.NumItems is less than two, then end with error

Exercise DAT_CAPABILITY

Exercise DAT_CAPABILITY operations for all TWAIN Standard capabilities (ID’s with a value

less than 0x8000). Ignore Vendor Custom capabilities (ID’s with a value of 0x8000 or greater).
Confirm correct ConType and ItemType values described in the TWAIN Specification in the
chapter titled Chapter 10, "Capabilities".

7. Action: MSG_RESETALL

7.1. Test: If return code is not TWRC_SUCCESS, end with an error

7.2. Action: Repeat this section for each enumerated value found inside of
ICAP_PIXELTYPE, (testing is done for each value of ICAP_PIXELTYPE, to provide

the best chance of exercising every available capability)

7.3. Action: Repeat this section for Standard TWAIN array values found inside of
CAP_SUPPORTEDCAPS (each Standard TWAIN capability ID is referred to as #CAP#

for the rest of this section)

7.3.1. Action: MSG_QUERYSUPPORT #CAP#

7.3.1.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.1.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.1.3. Test: If TW_CAPABILITY.ConType is not TWON_ONEVALUE, then

end with error

7.3.1.4. Test: If TW_ONEVALUE.ItemType is not TWTY_UINT32, then end

with error

7.3.1.5. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

7.3.1.6. Test: If the value of TW_ONEVALUE.Item doesn’t match the TWQC

values for this capability, then end with error

7.3.1.7. Test: If TWQC_GET, TWQC_GETCURRENT or TWQC_GETDEFAULT is
detected, then all three must be present, if any are missing end
with error

7.3.1.8. Test: If TWQC_RESET or TWQC_SET is detected, then both must be

present, plus TWQC_GET, TWQC_GETCURRENT and

TWQC_GETDEFAULT, if not true then end with error

7.3.2. Action: If TWQC_GET is reported, then call MSG_GET #CAP#

7.3.2.1. Test: If result is TWRC_FAILURE / TWCC_CAPSEQERROR, then skip

to the next capability

7.3.2.2. Test: If result is not TWRC_SUCCESS, then end with error

Chapter 13

13-16 TWAIN 2.4 Specification

7.3.2.3. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

7.3.2.5. Test: If the value of TW_CAPABILITY.ConType doesn’t match the

Specification’s MSG_GET container for this capability, then end

with error

7.3.2.6. Test: If container’s ItemType doesn’t match the Specification’s

ItemType for this capability, then end with error

7.3.3. Action: If TWQC_GETCURRENT is reported, then call MSG_GETCURRENT
#CAP#

7.3.3.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.3.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.3.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

7.3.3.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

7.3.3.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ENUMERATION, TWON_ONEVALUE or

TWON_RANGE, then the TW_CAPABILITY.ConType for

MSG_GETCURRENT must be TWTY_ONEVALUE, if not

then end with error

7.3.3.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ARRAY then the

TW_CAPABILITY.ConType for MSG_GETCURRENT

must be TWTY_ARRAY, if not then end with error

7.3.3.4.3. Test: If container’s ItemType for MSG_GET doesn’t

match container’s ItemType for MSG_GETCURRENT,

then end with error

7.3.4. Action: If TWQC_GETDEFAULT is reported, then call MSG_GETDEFAULT
#CAP#

7.3.4.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.4.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.4.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

7.3.4.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

TWAIN 2.4 Specification 13-17

7.3.4.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ENUMERATION, TWON_ONEVALUE or

TWON_RANGE, then the TW_CAPABILITY.ConType for

MSG_GETDEFAULT must be TWTY_ONEVALUE, if not

then end with error

7.3.4.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ARRAY then the

TW_CAPABILITY.ConType for MSG_GETDEFAULT

must be TWTY_ARRAY, if not then end with error

7.3.4.4.3. Test: If container’s ItemType for MSG_GET doesn’t

match container’s ItemType for MSG_GETDEFAULT,

then end with error

7.3.5. Action: If TWQC_RESET is reported, then call MSG_RESET #CAP#

7.3.5.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.5.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.5.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

7.3.6. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do the
following:

7.3.6.1. Test: If TW_CAPABILITY.ConType for MSG_GET doesn’t match

TW_CAPABILITY.ConType for MSG_RESET, then end with error

7.3.6.2. Test: If container’s ItemType for MSG_GET doesn’t match

container’s ItemType for MSG_RESET, then end with error

7.3.7. Action: If TWQC_SET is reported then do the following:

7.3.7.1. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

7.3.7.1.1. Action: MSG_GET #CAP#

7.3.7.1.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

7.3.7.1.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GET

7.3.7.1.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

7.3.7.1.2.2. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

Chapter 13

13-18 TWAIN 2.4 Specification

7.3.7.2. Action: If TWQC_GETCURRENT was reported by

MSG_QUERYSUPPORT then do the following:

7.3.7.2.1. Action: MSG_GETCURRENT #CAP#

7.3.7.2.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

7.3.7.2.1.2. Action: MSG_SET with TW_CAPABILITY

from MSG_GETCURRENT

7.3.7.2.1.3. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

7.3.7.2.1.4. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

7.3.7.3. Action: If TWQC_GETDEFAULT was reported by

MSG_QUERYSUPPORT then do the following:

7.3.7.3.1. Action: MSG_GETDEFAULT #CAP#

7.3.7.3.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

7.3.7.3.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETDEFAULT

7.3.7.3.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

7.3.7.3.2.2. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

7.3.7.4. Action: If TWQC_RESET was reported by MSG_QUERYSUPPORT

then do the following:

7.3.7.4.1. Action: MSG_RESET #CAP#

7.3.7.4.1.1. Test: If result is not TWRC_SUCCESS,

then end with error

7.3.7.4.2. Action: MSG_SET with TW_CAPABILITY from
MSG_RESET

7.3.7.4.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

TWAIN 2.4 Specification 13-19

7.3.7.4.2.2. Test: If result is not TWRC_SUCCESS, then

end with error

7.3.7.5. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

7.3.7.5.1. Action: MSG_GET #CAP#

7.3.7.5.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

7.3.7.5.1.2. Test: If the container’s ItemType is

TWTY_BOOL and the test application has

DF_APP2 in its

TW_IDENTITY.SupportedGroups, and

the data source has DF_DS2 in its

TW_IDENTITY.SupportedGroups,

then TW_CAPABILITY.ConType must be

set to TW_ENUMERATION, if not then end

with error

7.3.7.5.1.3. Test: If the container’s ItemType is

TWTY_BOOL and the test application does

not have DF_APP2 in its

TW_IDENTITY.SupportedGroups, or

the data source does not have DF_DS2 in

its TW_IDENTITY.SupportedGroups,

then TW_CAPABILITY.ConType must be

set to TW_ONEVALUE, if not then end with

error

7.3.7.5.2. Action: If TW_CAPABILITY.ConType is TWON_ARRAY

then repeat following for each value in the array:

7.3.7.5.2.1. Action: MSG_SET the value using a

TW_ARRAY container

7.3.7.5.2.1.1. Test: If result is not
TWRC_SUCCESS or

TWRC_CHECKSTATUS,

then end with error

7.3.7.5.2.2. Action: If TW_CAPABILITY.ConType is

TWON_ARRAY then do the following:

7.3.7.5.2.2.1. Action: MSG_SET the

value using a TW_ARRAY

container, setting the
value to 22222 (which is
expected to be an illegal
value)

Chapter 13

13-20 TWAIN 2.4 Specification

7.3.7.5.2.3. Test: If result is not TWRC_BADVALUE or

TWRC_CHECKSTATUS, then end with error

7.3.7.5.3. Action: If TW_CAPABILITY.ConType is

TWON_ENUMERATION then repeat following for each

value in the enumeration:

7.3.7.5.4. Action: MSG_SET the value using a TW_ENUMERATION

container

7.3.7.5.4.1. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

7.3.7.5.5. Action: If TW_CAPABILITY.ConType is

TWON_ENUMERATION then do the following:

7.3.7.5.5.1. Action: MSG_SET the current value using

a TW_ONEVALUE container, the value must
be something that did not appear in the
list of valid enumerations

7.3.7.5.5.1.1. Test: If result is not
TWRC_BADVALUE, then

end with error

7.3.7.5.6. Action: If TW_CAPABILITY.ConType is TWON_RANGE

then repeat the following for the
TW_RANGE.MinValue, TW_RANGE.CurrentValue

and TW_RANGE.MaxValue:

7.3.7.5.6.1. Action: MSG_SET the current value using

a TW_RANGE container

7.3.7.5.6.1.1. Test: If result is not
TWRC_SUCCESS or

TWRC_CHECKSTATUS,

then end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Vendor Custom Capability Tests

Purpose

Exercise all of the Vendor Custom capabilities exposed by CAP_SUPPORTEDCAPS using the

standard operations supported by DG_CONTROL / DAT_CAPABILITY.

TWAIN 2.4 Specification 13-21

Operations on capabilities (MSG_* values specified below) are assumed to be DG_CONTROL /

DAT_CAPABILITY, unless otherwise stated.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that
the data source is in the state it would be in after being installed (e.g., no saved settings from
previous sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Confirm Basic Negotiation with CAP_SUPPORTEDCAPS

Make sure that CAP_SUPPORTEDCAPS is working properly. Perform basic checks on how

well it supports negotiation.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_GET CAP_SUPPORTEDCAPS (gets the list of capabilities to be tested)

1.2.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2.2. Test: If TW_CAPABILITY.Cap is not CAP_SUPPORTEDCAPS, then end with

error

1.2.3. Test: If TW_CAPABILITY.ConType is not TWON_ARRAY, then end with error

1.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value,

then end with error

1.2.5. Test: If TW_ARRAY.ItemType is not TWTY_UINT16, then end with error

1.2.6. Test: If TW_ARRAY.NumItems is equal to zero, then end with error

1.2.7. Action: Confirm the presence of the following capabilities in
TW_ARRAY.ItemList

1.2.7.1. Test: If CAP_SUPPORTEDCAPS not found, then end with error

1.2.7.2. Test: If ICAP_PIXELTYPE not found, then end with error

 Confirm Basic Negotiation with ICAP_PIXELTYPE

Make sure that ICAP_PIXELTYPE is working properly. Perform basic checks on how well it

supports negotiation.

2. Action: MSG_GET ICAP_PIXELTYPE

2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Test: If TW_CAPABILITY.Cap is not ICAP_PIXELTYPE, then end with error

Chapter 13

13-22 TWAIN 2.4 Specification

2.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end

with error

2.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

2.6. Test: If TW_ENUMERATION.NumItems is equal to zero, then end with error

Exercise DAT_CAPABILITY

Exercise DAT_CAPABILITY operations for all Vendor Custom capabilities (ID’s with a value of

0x8000 or greater). Ignore TWAIN Standard capabilities (ID’s with a value less than

0x8000).

3. Action: Repeat this section for each enumerated value found inside of ICAP_PIXELTYPE,

(testing is done for each value of ICAP_PIXELTYPE, to provide the best chance of
exercising every available capability)

3.1. Action: Repeat this section for each Vendor Custom TWAIN array value found
inside of CAP_SUPPORTEDCAPS (each Vendor Custom capability ID is referred to as

#CAP# for the rest of this section)

3.1.1. Action: MSG_QUERYSUPPORT #CAP#

3.1.1.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.1.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.1.3. Test: If TW_CAPABILITY.ConType is not TWON_ONEVALUE, then

end with error

3.1.1.4. Test: If TW_ONEVALUE.ItemType is not TWTY_UINT32, then end

with error

3.1.1.5. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

3.1.2. Action: If TWQC_GET is reported, then call MSG_GET #CAP#

3.1.2.1. Test: If result is TWRC_FAILURE / TWCC_CAPSEQERROR, then

skip to the next capability

3.1.2.2. Test: If result is not TWRC_SUCCESS, then end with error

3.1.2.3. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

3.1.3. Action: If TWQC_GETCURRENT is reported, then call MSG_GETCURRENT
#CAP#

3.1.3.1. Test: If result is not TWRC_SUCCESS, then end with error

TWAIN 2.4 Specification 13-23

3.1.3.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.3.3. Test: If TW_CAPABILITY.hContainer is not a valid

TW_HANDLE value, then end with error

3.1.3.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

3.1.3.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ENUMERATION, TWON_ONEVALUE or

TWON_RANGE, then the TW_CAPABILITY.ConType for

MSG_GETCURRENT must be TWTY_ONEVALUE, if not

then end with error

3.1.3.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ARRAY then the

TW_CAPABILITY.ConType for MSG_GETCURRENT

must be TWTY_ARRAY, if not then end with error

3.1.3.4.3. Test: If container’s ItemType for MSG_GET doesn’t

match container’s ItemType for MSG_GETCURRENT,

then end with error

3.1.4. Action: If TWQC_GETDEFAULT is reported, then call MSG_GETDEFAULT
#CAP#

3.1.4.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.4.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.4.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE

value, then end with error

3.1.4.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

3.1.4.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ENUMERATION, TWON_ONEVALUE or

TWON_RANGE, then the TW_CAPABILITY.ConType for

MSG_GETDEFAULT must be TWTY_ONEVALUE, if not

then end with error

3.1.4.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET

was TWON_ARRAY then the

TW_CAPABILITY.ConType for MSG_GETDEFAULT

must be TWTY_ARRAY, if not then end with error

3.1.4.4.3. Test: If container’s ItemType for MSG_GET doesn’t

match container’s ItemType for MSG_GETDEFAULT,

then end with error

3.1.5. Action: If TWQC_RESET is reported, then call MSG_RESET #CAP#

Chapter 13

13-24 TWAIN 2.4 Specification

3.1.5.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.5.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.5.3. Test: If TW_CAPABILITY.hContainer is not a valid

TW_HANDLE value, then end with error

3.1.5.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

3.1.5.4.1. Test: If TW_CAPABILITY.ConType for MSG_GET

doesn’t match TW_CAPABILITY.ConType for

MSG_RESET, then end with error

3.1.5.4.2. Test: If container’s ItemType for MSG_GET doesn’t

match container’s ItemType for MSG_RESET, then end

with error

3.1.6. Action: If TWQC_SET is reported then do the following:

3.1.6.1. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

3.1.6.1.1. Action: MSG_GET #CAP#

3.1.6.1.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.1.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GET

3.1.6.1.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

3.1.6.1.2.2. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

3.1.6.2. Action: If TWQC_GETCURRENT was reported by

MSG_QUERYSUPPORT then do the following:

3.1.6.2.1. Action: MSG_GETCURRENT #CAP#

3.1.6.2.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.2.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETCURRENT

3.1.6.2.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

TWAIN 2.4 Specification 13-25

3.1.6.2.2.2. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

3.1.6.3. Action: If TWQC_GETDEFAULT was reported by

MSG_QUERYSUPPORT then do the following:

3.1.6.3.1. Action: MSG_GETDEFAULT #CAP#

3.1.6.3.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.3.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETDEFAULT

3.1.6.3.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

3.1.6.3.2.2. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

3.1.6.4. Action: If TWQC_RESET was reported by MSG_QUERYSUPPORT

then do the following:

3.1.6.4.1. Action: MSG_RESET #CAP#

3.1.6.4.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.4.2. Action: MSG_SET with TW_CAPABILITY from
MSG_RESET

3.1.6.4.2.1. Test: If result is TWRC_FAILURE /

TWCC_CAPSEQERROR, then skip to next

capability

3.1.6.4.2.2. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.5. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then

do the following:

3.1.6.5.1. Action: MSG_GET #CAP#

3.1.6.5.1.1. Test: If result is not TWRC_SUCCESS, then

end with error

3.1.6.5.1.2. Test: If the container’s ItemType is

TWTY_BOOL and the test application has

DF_APP2 in its

TW_IDENTITY.SupportedGroups, and

the data source has DF_DS2 in its

Chapter 13

13-26 TWAIN 2.4 Specification

TW_IDENTITY.SupportedGroups,

then TW_CAPABILITY.ConType must be

set to TW_ENUMERATION, if not then end

with error

3.1.6.5.1.3. Test: If the container’s ItemType is

TWTY_BOOL and the test application does

not have DF_APP2 in its

TW_IDENTITY.SupportedGroups, or

the data source does not have DF_DS2 in

its TW_IDENTITY.SupportedGroups,

then TW_CAPABILITY.ConType must be

set to TW_ONEVALUE, if not then end with

error

3.1.6.5.2. Action: If TW_CAPABILITY.ConType is TWON_ARRAY

then repeat following for each value in the array:

3.1.6.5.2.1. Action: MSG_SET the value using a

TW_ARRAY container

3.1.6.5.2.1.1. Test: If result is not
TWRC_SUCCESS or

TWRC_CHECKSTATUS,

then end with error

3.1.6.5.3. Action: If TW_CAPABILITY.ConType is TWON_ARRAY

then do the following:

3.1.6.5.3.1. Action: MSG_SET the value using a

TW_ARRAY container, setting the value to

22222 (which is expected to be an illegal
value)

3.1.6.5.3.1.1. Test: If result is not
TWRC_BADVALUE or

TWRC_CHECKSTATUS,

then end with error

3.1.6.5.4. Action: If TW_CAPABILITY.ConType is

TWON_ENUMERATION then repeat following for each

value in the enumeration:

3.1.6.5.5. Action: MSG_SET the value using a TW_ENUMERATION

container

3.1.6.5.5.1. Test: If result is not TWRC_SUCCESS or

TWRC_CHECKSTATUS, then end with error

3.1.6.5.6. Action: If TW_CAPABILITY.ConType is

TWON_ENUMERATION then do the following:

TWAIN 2.4 Specification 13-27

3.1.6.5.6.1. Action: MSG_SET the current value using

a TW_ONEVALUE container, the value must

be something that did not appear in the
list of valid enumerations

3.1.6.5.6.1.1. Test: If result is not
TWRC_BADVALUE, then

end with error

3.1.6.5.7. Action: If TW_CAPABILITY.ConType is TWON_RANGE

then repeat the following for the
TW_RANGE.MinValue, TW_RANGE.CurrentValue

and TW_RANGE.MaxValue:

3.1.6.5.7.1. Action: MSG_SET the current value using

a TW_RANGE container

3.1.6.5.7.1.1. Test: If result is not
TWRC_SUCCESS or

TWRC_CHECKSTATUS,

then end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Status Return Tests

Purpose

Confirm that the expected status return is reported by certain operations.

This is not an exhaustive test of all possible Status Returns.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that
the data source is in the state it would be in after being installed (e.g., no saved settings from
previous sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Check Status Returns for DAT_IMAGENATIVEXFER and DAT_IMAGEMEMXFER

Confirm that DAT_IMAGENATIVEXFER and DAT_IMAGEMEMXFER both return the correct status

returns in various error conditions.

1. Action: In State 4 (after MSG_OPENDS, but before calling MSG_ENABLEDS)…

Chapter 13

13-28 TWAIN 2.4 Specification

1.1. Confirm that the proper statuses are returned for bad protocols and attempts to
perform image transfers in State 4.

1.2. Action: Call DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_SET

1.2.1. Test: If result is not TWRC_FAILURE / TWCC_BADPROTOCOL, then end

with error

1.3. Action: Call DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.3.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with
error

1.4. Action: Call DG_IMAGE / DAT_IMAGEMEMXFER / MSG_SET

1.4.1. Test: If result is not TWRC_FAILURE / TWCC_BADPROTOCOL, then end
with error

1.5. Action: Call DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

1.5.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with

error

Check Status Returns for DAT_IMAGELAYOUT

Confirm that DAT_IMAGELAYOUT returns the correct status returns in various error conditions.

2. Action: Call DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
TRUE

2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

2.2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.3. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET using the

TW_IMAGELAYOUT values from the previous MSG_GET call

2.3.1. Test: If result is not TWRC_FAILURE / TWRC_SEQERROR, then end with

error

2.4. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

2.4.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with
error

Check Status Returns for DAT_CAPABILITY

Confirm that DAT_CAPABILITY returns the correct status returns in various error conditions.

3. Action: Call DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
TRUE

3.1. Test: If result is not TWRC_SUCCESS, then end with error

TWAIN 2.4 Specification 13-29

3.2. Action: MSG_GET CAP_SUPPORTEDCAPS

3.2.1. Test: If result is not TWRC_SUCCESS, then end with error

3.3. Action: MSG_GET CAP_EXTENDEDCAPS

3.3.1. Test: If result is not TWRC_SUCCESS or the TW_ARRAY is empty, then skip

any checks of CAP_EXTENDEDCAPS referenced in the rest of this section

3.4. Action: For each value found in CAP_SUPPORTEDCAPS that is not in

CAP_EXTENDEDCAPS do the following sections (each capability ID is referred to as

#CAP# for the rest of this section):

3.4.1. Action: MSG_GET #CAP#

3.4.1.1. Test: If result is not TWRC_SUCCESS, then skip to next capability

3.4.2. Action: MSG_SET #CAP# with results of previous MSG_GET

3.4.2.1. Test: If result is TWRC_SUCCESS or TWRC_CHECKSTATUS, then

end with error

3.4.3. Action: MSG_RESET #CAP#

3.4.3.1. Test: If result is TWRC_SUCCESS or TWRC_CHECKSTATUS, then

end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Stress Tests

Purpose

Stress aspects of data sources that have been reported as common problems.

Pre-Test Procedure

Open the data source manager. It is required that when opened the data source is in the state it
would be in after being installed (e.g., no saved settings from previous sessions), to make the
test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Open and Close the Data Source Multiple Times

Confirm that the data source can open and close multiple times. This tests for crashes.

1. Action: Repeat this section twenty (20) times

Chapter 13

13-30 TWAIN 2.4 Specification

1.1. Confirm that the data source can successfully open and close repeated times from a
single instance of an application.

1.2. Action: Call DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

1.2.1. Test: If result is not TWRC_SUCCESS, then end with error

1.3. Action: Call DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

1.3.1. Test: If result is not TWRC_SUCCESS, then end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Non-UI Image Transfer Tests

Purpose

Confirm that multiple MSG_ENABLEDS and MSG_DISABLEDS calls can be made in the context

of one MSG_OPENDS / MSG_CLOSEDS. This test focuses on image capture with no UI,

verifying that the Application does not have to close the driver after capturing images.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that
the data source is in the state it would be in after being installed (e.g., no saved settings from
previous sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Exercise DAT_IMAGENATIVEXFER

This test issues multiple image transfer sessions using DAT_IMAGENATIVEXFER. It is

performed for all available image sources (unspecified, flatbed and/or ADF). Only one image
is transferred per session.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_GET CAP_SUPPORTEDCAPS (get the list of capabilities to be tested)

1.3. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE

1.4. Action: MSG_GETCURRENT ICAP_XFERMECH

1.5. Test: If return code is not TWRC_SUCCESS, end with an error

1.6. Test: If value is not TWSX_NATIVE, end with an error.

TWAIN 2.4 Specification 13-31

1.7. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

1.8. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

1.9. Action: MSG_SET CAP_XFERCOUNT to 1

1.10. Action: Do the following for each supported ICAP_PIXELTYPE

1.10.1. Action: MSG_SET ICAP_PIXELTYPE

1.10.2. Action: MSG_GET ICAP_BITDEPTH

1.10.3. Action: Do the following for each supported ICAP_BITDEPTH

1.10.3.1. Action: MSG_SET ICAP_BITDEPTH

1.10.3.2. Action: Do the following for the minimum, maximum and 300
(or nearest) resolution values.

1.10.3.2.1. Action: MSG_SET ICAP_XRESOLUTION and
ICAP_YRESOLUTION

1.10.3.2.2. Action: DG_CONTROL / DAT_USERINTERFACE /

MSG_ENABLEDS with ShowUI = FALSE and ModalUI
= FALSE

1.10.3.2.3. Test: If return code is not TWRC_SUCCESS, end with

an error

1.10.3.2.4. Action: Wait for MSG_XFERREADY

1.10.3.2.5. Action: MSG_GET ICAP_XFERMECH

1.10.3.2.6. Test: If return code is not TWRC_SUCCESS, end with

an error

1.10.3.2.7. Action: DG_IMAGE / DAT_IMAGENATIVEXFER /
MSG_GET

1.10.3.2.8. Test: If return code is not TWRC_XFERDONE, end with

an error

1.10.3.2.9. Test: If the handle does not point to a valid image,
end with an error

1.10.3.2.10. Test: If the bit depth of the image is not what was
requested, end with an error

1.10.3.2.11. Action: Free handle returned by
DAT_IMAGENATIVEXFER

1.10.3.2.12. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

Chapter 13

13-32 TWAIN 2.4 Specification

1.10.3.2.13. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

1.10.3.2.14. Test: If return code is not TWRC_SUCCESS, end with

an error

Exercise DAT_IMAGEMEMXFER

This test issues multiple image transfer sessions using DAT_IMAGEMEMXFER. It is performed
for all available image sources (unspecified, flatbed and/or ADF). Only one image is
transferred per session. The preferred size specified by the data source is used to transfer each
strip.

2. Action: MSG_RESETALL

2.1. Test: If return code is not TWRC_SUCCESS, end with an error

2.2. Action: MSG_SET ICAP_XFERMECH to TWSX_MEMORY

2.3. Action: MSG_GETCURRENT ICAP_XFERMECH

2.4. Test: If return code is not TWRC_SUCCESS, end with an error

2.5. Test: If value is not TWSX_MEMORY, end with an error

2.6. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

2.7. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

2.8. Action: MSG_SET CAP_XFERCOUNT to 1

2.9. Action: Do the following for each supported ICAP_PIXELTYPE

2.9.1. Action: MSG_SET ICAP_PIXELTYPE

2.9.2. Action: MSG_GET ICAP_BITDEPTH

2.9.3. Action: Do the following for each supported ICAP_BITDEPTH

2.9.3.1. Action: MSG_SET ICAP_BITDEPTH

2.9.3.2. Action: MSG_GET ICAP_COMPRESSION

2.9.3.3. Action: Do the following for each supported
ICAP_COMPRESSION

2.9.3.3.1. Action: MSG_SET ICAP_COMPRESSION

2.9.3.3.2. Action: Do the following for the minimum,
maximum and 300 (or nearest) resolution values.

2.9.3.3.2.1. Action: MSG_SET ICAP_XRESOLUTION

and ICAP_YRESOLUTION

TWAIN 2.4 Specification 13-33

2.9.3.3.2.2. Action: DG_CONTROL /
DAT_USERINTERFACE /

MSG_ENABLEDS with ShowUI = FALSE

and ModalUI = FALSE

2.9.3.3.2.3. Test: If return code is not
TWRC_SUCCESS, end with an error

2.9.3.3.2.4. Action: Wait for MSG_XFERREADY

2.9.3.3.2.5. Action: MSG_GET ICAP_XFERMECH

2.9.3.3.2.6. Test: If return code is not
TWRC_SUCCESS, end with an error

2.9.3.3.2.7. Action: DG_CONTROL /
DAT_SETUPMEMXFER / MSG_GET

2.9.3.3.2.8. Test: If return code is not
TWRC_SUCCESS, end with an error

2.9.3.3.2.9. Action: DG_IMAGE /

DAT_IMAGEMEMXFER / MSG_GET with

the preferred buffer size

2.9.3.3.2.10. Test: if the return code is
TWRC_SUCCESS, repeat previous step

2.9.3.3.2.11. Test: if the return code is not
TWRC_XFERDONE, end with an error

2.9.3.3.2.12. Action: DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER

2.9.3.3.2.13. Action: DG_CONTROL /
DAT_USERINTERFACE /

MSG_DISABLEDS

2.9.3.3.2.14. Test: If return code is not
TWRC_SUCCESS, end with an error

Exercise DAT_IMAGEFILEXFER

This test issues multiple image transfer sessions using DAT_IMAGEFILEXFER. It is performed
for all available image sources (unspecified, flatbed and/or ADF). Only one image is
transferred per session. The preferred size specified by the data source is used to transfer each
strip.

3. Action: MSG_RESETALL

3.1. Test: If return code is not TWRC_SUCCESS, end with an error

Chapter 13

13-34 TWAIN 2.4 Specification

3.2. Action: MSG_SET ICAP_XFERMECH to TWSX_MEMORY

3.3. Test: If return code is TWRC_SUCCESS / TWCC_BADVALUE, skip to section 4

3.4. Test: If return code is not TWRC_SUCCESS, end with an error

3.5. Action: MSG_SET ICAP_XFERMECH to TWSX_FILE

3.6. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

3.7. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

3.8. Action: MSG_SET CAP_XFERCOUNT to 1

3.9. Action: MSG_GET ICAP_IMAGEFILEFORMAT

3.10. Action: Do the following for each supported ICAP_IMAGEFILEFORMAT

3.10.1. Action: MSG_SET ICAP_IMAGEFILEFORMAT

3.10.2. Action: MSG_GET ICAP_PIXELTYPE

3.10.3. Action: Do the following for each supported ICAP_PIXELTYPE

3.10.3.1. Action: MSG_SET ICAP_PIXELTYPE

3.10.3.2. Action: MSG_GET ICAP_BITDEPTH

3.10.3.3. Action: Do the following for each supported ICAP_BITDEPTH

3.10.3.3.1. Action: MSG_SET ICAP_BITDEPTH

3.10.3.3.2. Action: MSG_GET ICAP_COMPRESSION

3.10.3.3.3. Action: Do the following for each supported
ICAP_COMPRESSION

3.10.3.3.3.1. Action: MSG_SET
ICAP_COMPRESSION

3.10.3.3.3.2. Action: Do the following for the
minimum, maximum and 300 (or nearest)
resolution values.

3.10.3.3.3.2.1. Action: MSG_SET

ICAP_XRESOLUTION and
ICAP_YRESOLUTION

3.10.3.3.3.2.2. Action: DG_CONTROL /
DAT_USERINTERFACE /

MSG_ENABLEDS with

ShowUI = FALSE and
ModalUI = FALSE

TWAIN 2.4 Specification 13-35

3.10.3.3.3.2.3. Test: If return code is
not TWRC_SUCCESS, end

with an error

3.10.3.3.3.2.4. Action: Wait for
MSG_XFERREADY

3.10.3.3.3.2.5. Action: MSG_GET
ICAP_XFERMECH

3.10.3.3.3.2.6. Test: If return code is
not TWRC_SUCCESS, end

with an error

3.10.3.3.3.2.7. Action: DG_CONTROL /
DAT_SETUPFILEXFER /

MSG_SET

3.10.3.3.3.2.8. Action: DG_IMAGE /
DAT_IMAGEFILEXFER /

MSG_GET

3.10.3.3.3.2.9. Test: If return code is
not TWRC_XFERDONE,

end with an error

3.10.3.3.3.2.10. Action: DG_CONTROL /
DAT_PENDINGXFERS /

MSG_ENDXFER

3.10.3.3.3.2.11. Action: DG_CONTROL /
DAT_USERINTERFACE /

MSG_DISABLEDS

3.10.3.3.3.2.12. Test: If return code is
not TWRC_SUCCESS, end

with an error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

 UI Image Transfer Tests

Purpose

Confirm that multiple MSG_ENABLEDS and MSG_DISABLEDS calls can be made in the context

of one MSG_OPENDS / MSG_CLOSEDS. This test focuses on image capture with the UI,

verifying that the Application does not have to close the driver after capturing images.

Chapter 13

13-36 TWAIN 2.4 Specification

Procedure

These tests are identical to the “Non-UI Image Transfer Tests”, except that the value of ShowUI

is set to TRUE instead of FALSE.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

CAP_XFERCOUNT Tests

Purpose

Confirm that when the data source accepts various values for CAP_XFERCOUNT, that it returns

the specified number of images. Test both flatbed and document feeders.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that
the data source is in the state it would be in after being installed (e.g., no saved settings from
previous sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Test Flatbed Scanning

This test sets CAP_XFERCOUNT to 0, 1 and -1 for a flatbed scanner. It expects an error for the

value 0, and only one image to be transferred per scanning session for the values 1 and -1.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_SET CAP_FEEDERENABLED to FALSE

1.3. Test: If return is TWRC_FAILURE / TWCC_BADVALUE, then scanner does not have
a flatbed, proceed to the Test Document Feeder Scanning section

1.4. Test: If return is not TWRC_SUCCESS and not TWRC_FAILURE /

TWCC_CAPUNSUPPORTED, end with error

1.5. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE

1.5.1. Test: If return is not TWRC_SUCCESS, end with error

1.6. Action: MSG_SET CAP_XFERCOUNT to 0

1.6.1. Test: If return code is not TWRC_FAILURE / TWCC_BADVALUE, end with
an error

1.7. Action: MSG_SET CAP_XFERCOUNT to 1

TWAIN 2.4 Specification 13-37

1.7.1. Test: If return is not TWRC_SUCCESS, end with error

1.8. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI

= FALSE and ModalUI = FALSE

1.8.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.9. Action: Wait for MSG_XFERREADY

1.10. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.10.1. Test: If return code is not TWRC_XFERDONE, end with an error

1.11. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

1.11.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.11.2. Test: If TW_PENDINGXFERS.Count is not 0, end with error

1.12. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

1.12.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.13. Action: MSG_SET CAP_XFERCOUNT to -1

1.13.1. Test: If return is not TWRC_SUCCESS, end with error

1.14. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI

= FALSE and ModalUI = FALSE

1.14.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.15. Action: Wait for MSG_XFERREADY

1.16. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.16.1. Test: If return code is not TWRC_XFERDONE, end with an error

1.17. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

1.17.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.17.2. Test: If TW_PENDINGXFERS.Count is not 0, end with error

1.18. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

1.18.1. Test: If return code is not TWRC_SUCCESS, end with an error

Test Document Feeder Scanning

This test issues multiple image transfer sessions using DAT_IMAGENATIVEXFER. It is

performed for all available image sources (unspecified, flatbed and/or ADF). Only one image
is transferred per session.

2. Action: MSG_RESETALL

2.1. Test: If return code is not TWRC_SUCCESS, end with an error

Chapter 13

13-38 TWAIN 2.4 Specification

2.2. Action: MSG_SET CAP_FEEDERENABLED to TRUE

2.3. Test: If return is TWRC_FAILURE / TWCC_BADVALUE or TWRC_FAILURE /

TWCC_CAPUNSUPPORTED, then scanner does not have a Document Feeder, skip the

rest of this section

2.4. Test: If return is not TWRC_SUCCESS, end with error

2.5. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE

2.5.1. Test: If return is not TWRC_SUCCESS, end with error

2.6. Action: MSG_SET CAP_XFERCOUNT to 3

2.6.1. Test: If return is not TWRC_SUCCESS or TWRC_CHECKSTATUS, end with

error

2.7. Action: MSG_GET CAP_XFERCOUNT

2.7.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2. Test: If value is not equal to 3 do this section

2.7.2.1. Action: MSG_SET CAP_XFERCOUNT to 0

2.7.2.1.1. Test: If return code is not TWRC_FAILURE /

TWCC_BADVALUE, end with an error

2.7.2.2. Action: MSG_SET CAP_XFERCOUNT to 1

2.7.2.2.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2.3. Action: Ask user to place one sheet of paper in the document
feeder

2.7.2.4. DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with

ShowUI = FALSE and ModalUI = FALSE

2.7.2.4.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.2.5. Action: Wait for MSG_XFERREADY

2.7.2.6. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.2.6.1. Test: If return code is not TWRC_XFERDONE, end with

an error

2.7.2.7. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

2.7.2.7.1. Test: If return code is not TWRC_SUCCESS, end with

an error

TWAIN 2.4 Specification 13-39

2.7.2.7.2. Test: If TW_PENDINGXFERS.Count is not 0, end with

error

2.7.2.8. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.2.8.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.2.9. Action: MSG_SET CAP_XFERCOUNT to -1

2.7.2.9.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2.10. Action: Ask user to place one sheet of paper in the document
feeder

2.7.2.11. Action: DG_CONTROL / DAT_USERINTERFACE /

MSG_ENABLEDS with ShowUI = FALSE and ModalUI = FALSE

2.7.2.11.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.2.12. Action: Wait for MSG_XFERREADY

2.7.2.13. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.2.13.1. Test: If return code is not TWRC_XFERDONE, end with

an error

2.7.2.14. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

2.7.2.14.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.2.14.2. Test: If TW_PENDINGXFERS.Count is not 0, end

with error

2.7.2.15. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.2.15.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3. Test: If value is equal to 3 do this section

2.7.3.1. Action: Ask user to place three sheets of paper in the document
feeder

2.7.3.2. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

Chapter 13

13-40 TWAIN 2.4 Specification

2.7.3.2.1. Test: If return code is not TWRC_SUCCESS or

TWRC_FAILURE / TWCC_CAPUNSUPPORTED, end

with error

2.7.3.3. Action: MSG_SET CAP_XFERCOUNT to 0

2.7.3.3.1. Test: If return code is not TWRC_FAILURE /

TWCC_BADVALUE, end with an error

2.7.3.4. Action: MSG_SET CAP_XFERCOUNT to 1

2.7.3.4.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.3.5. Action: DG_CONTROL / DAT_USERINTERFACE /

MSG_ENABLEDS with ShowUI = FALSE and ModalUI =
FALSE

2.7.3.5.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3.6. Action: Wait for MSG_XFERREADY

2.7.3.7. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.7.1. Test: If return code is not TWRC_XFERDONE, end with

an error

2.7.3.8. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

2.7.3.8.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3.8.2. Test: If TW_PENDINGXFERS.Count is not 0, end with

error

2.7.3.9. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.3.9.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3.10. Action: MSG_SET CAP_XFERCOUNT to -1

2.7.3.10.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.3.11. Action: DG_CONTROL / DAT_USERINTERFACE /

MSG_ENABLEDS with ShowUI = FALSE and ModalUI = FALSE

2.7.3.11.1. Test: If return code is not TWRC_SUCCESS, end with

an error

TWAIN 2.4 Specification 13-41

2.7.3.12. Action: Wait for MSG_XFERREADY

2.7.3.13. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.13.1. Test: If return code is not TWRC_XFERDONE, end with

an error

2.7.3.14. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

2.7.3.14.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3.14.2. Test: If TW_PENDINGXFERS.Count is not 1 or -1,

end with error

2.7.3.15. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.15.1. Test: If return code is not TWRC_XFERDONE, end with

an error

2.7.3.16. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

2.7.3.16.1. Test: If return code is not TWRC_SUCCESS, end with

an error

2.7.3.16.2. Test: If TW_PENDINGXFERS.Count is not 0, end with

error

2.7.3.17. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.3.17.1. Test: If return code is not TWRC_SUCCESS, end with

an error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Version Tests

Purpose

Confirm that the data sources responds correctly to different TWAIN versions of data source
manager and application.

Chapter 13

13-42 TWAIN 2.4 Specification

Pre-Test Procedure

Close the data source manager.

Attempt to scan Multiple Times

Confirm that the data source can respond correctly to different TWAIN version of application
and data source manager by attempting to scan using different setups. This tests for hangs
and crashes. Use Memory transfer if available. Scan one image in simplex without UI.
Testing with old DSM is only for 32-bit data sources only.

1. Action: MSG_OPENDSM using old DSM as TWAIN version 1.9 application, with DF_APP2

set,

1.1. Action: Attempt to scan

1.2. Test: Confirm that the scan succeeds without hanging.

1.3. Test: If the application does not receive MSG_XFERREADY, then end with error

1.4. Action: MSG_CLOSEDSM

2. Action: MSG_OPENDSM using old DSM as TWAIN version 2.x application, with DF_APP2

not set,

2.1. Action: Attempt to scan

2.2. Test: Confirm that the scan succeeds without hanging.

2.3. Test: If the application does not receive MSG_XFERREADY, then end with error

2.4. Action: MSG_CLOSEDSM

3. Action: MSG_OPENDSM using old DSM as TWAIN version 2.x application, with DF_APP2

set,

3.1. Action: Attempt to scan

3.2. Test: Confirm that the scan succeeds without hanging.

3.3. Test: If the application does not receive MSG_XFERREADY, then end with error

3.4. Action: MSG_CLOSEDSM

4. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 1.9 application, with

DF_APP2 set,

4.1. Action: Attempt to scan

4.2. Test: Confirm that the scan succeeds without hanging.

4.3. Test: If the application does not receive MSG_XFERREADY, then end with error

4.4. Action: MSG_CLOSEDSM

5. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 2.x application, with

DF_APP2 not set,

TWAIN 2.4 Specification 13-43

5.1. Action: Attempt to scan

5.2. Test: Confirm that the scan succeeds without hanging.

5.3. Test: If the application does not receive MSG_XFERREADY, then end with error

5.4. Action: MSG_CLOSEDSM

6. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 1.9 application, with

DF_APP2 not set,

6.1. Action: Attempt to scan

6.2. Test: Confirm that the scan succeeds without hanging.

6.3. Test: If the application does not receive MSG_XFERREADY, then end with error

6.4. Action: MSG_CLOSEDSM

Post-Test Procedure

Nothing to do.

Verify Values For MSG_RESETALL and MSG_RESET

Purpose

Confirm that the indicated capabilities have the values required by the Specification after a
DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL is applied to the entire driver, or a

DG_CONTROL / DAT_CAPABILITY / MSG_RESET is applied to a single capability.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested.

Test MSG_RESETALL and MSG_RESET

Make sure that MSG_RESETALL results in the following values for the indicated capabilities.

1. Action: DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL

1.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2. Action: MSG_GETCURRENT ACAP_XFERMECH

1.2.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.2.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWSX_NATIVE, then end with error

1.2.3. Action: MSG_RESET ACAP_XFERMECH

Chapter 13

13-44 TWAIN 2.4 Specification

1.2.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWSX_NATIVE, then end with

error

1.3. Action: MSG_GETCURRENT CAP_AUTHOR

1.3.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_STRING128, or the value is not an empty string, then end with error

1.3.3. Action: MSG_RESET CAP_AUTHOR

1.3.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.3.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_STRING128, or the value is not an empty string, then end

with error

1.4. Action: MSG_GETCURRENT CAP_AUTOFEED

1.4.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.4.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.4.3. Action: MSG_RESET CAP_AUTOFEED

1.4.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.4.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.5. Action: MSG_GETCURRENT CAP_AUTOMATICCAPTURE

1.5.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.5.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.5.3. Action: MSG_RESET CAP_AUTOMATICCAPTURE

1.5.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.5.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.6. Action: MSG_GETCURRENT CAP_CAMERSIDE

1.6.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.6.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCS_BOTH, then end with error

TWAIN 2.4 Specification 13-45

1.6.3. Action: MSG_RESET CAP_CAMERSIDE

1.6.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.6.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCS_BOTH, then end with

error

1.7. Action: MSG_GETCURRENT CAP_CAPTION

1.7.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.7.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_STRING255, or the value is not an empty string, then end with error

1.7.3. Action: MSG_RESET CAP_CAPTION

1.7.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.7.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_STRING255, or the value is not an empty string, then end

with error

1.8. Action: MSG_GETCURRENT CAP_CLEARBUFFERS

1.8.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.8.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCB_AUTO, then end with error

1.8.3. Action: MSG_RESET CAP_CLEARBUFFERS

1.8.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.8.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCB_AUTO, then end with

error

1.9. Action: MSG_GETCURRENT CAP_CLEARPAGE

1.9.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.9.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.9.3. Action: MSG_RESET CAP_CLEARPAGE

1.9.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.9.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.10. Action: MSG_GETCURRENT CAP_DEVICEEVENT

1.10.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

Chapter 13

13-46 TWAIN 2.4 Specification

1.10.2. Test: If the container is not TW_ARRAY, or the value is not an empty array,

then end with error

1.10.3. Action: MSG_RESET CAP_DEVICEEVENT

1.10.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.10.3.2. Test: If the container is not TW_ARRAY, or the value is not an

empty array, then end with error

1.11. Action: MSG_GETCURRENT CAP_DOUBLEFEEDDETECTION

1.11.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.11.2. Test: If the container is not TW_ARRAY, or the value is not an empty array,

then end with error

1.11.3. Action: MSG_RESET CAP_DOUBLEFEEDDETECTION

1.11.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.11.3.2. Test: If the container is not TW_ARRAY, or the value is not an

empty array, then end with error

1.12. Action: MSG_GETCURRENT CAP_ENDORSER

1.12.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.12.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT32, or the value is not 1, then end with error

1.12.3. Action: MSG_RESET CAP_ENDORSER

1.12.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.12.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT32, or the value is not 1, then end with error

1.13. Action: MSG_GETCURRENT CAP_FEEDERPREP

1.13.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.13.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.13.3. Action: MSG_RESET CAP_FEEDERPREP

1.13.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.13.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.14. Action: MSG_GETCURRENT CAP_FEEDPAGE

1.14.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

TWAIN 2.4 Specification 13-47

1.14.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.14.3. Action: MSG_RESET CAP_FEEDPAGE

1.14.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.14.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.15. Action: MSG_GETCURRENT CAP_INDICATORS

1.15.1. Test: If the result is not TWRC_SUCCESS, then end with error

1.15.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.15.3. Action: MSG_RESET CAP_INDICATORS

1.15.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.15.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.16. Action: MSG_GETCURRENT CAP_INDICATORS

1.16.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.16.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.16.3. Action: MSG_RESET CAP_INDICATORS

1.16.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.16.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.17. Action: MSG_GETCURRENT CAP_JOBCONTROL

1.17.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.17.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWJC_NONE, then end with error

1.17.3. Action: MSG_RESET CAP_JOBCONTROL

1.17.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.17.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWJC_NONE, then end with

error

1.18. Action: MSG_GETCURRENT CAP_MICRENABLED

1.18.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

Chapter 13

13-48 TWAIN 2.4 Specification

1.18.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.18.3. Action: MSG_RESET CAP_MICRENABLED

1.18.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.18.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.19. Action: MSG_GETCURRENT CAP_PAPERHANDLING

1.19.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.19.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPH_NORMAL, then end with error

1.19.3. Action: MSG_RESET CAP_PAPERHANDLING

1.19.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.19.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPH_NORMAL, then end with

error

1.20. Action: MSG_GETCURRENT CAP_PRINTERENABLED

1.20.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.20.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.20.3. Action: MSG_RESET CAP_PRINTERENABLED

1.20.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.20.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.21. Action: MSG_GETCURRENT CAP_PRINTERINDEX

1.21.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.21.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT32, or the value is not 1, then end with error

1.21.3. Action: MSG_RESET CAP_PRINTERINDEX

1.21.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.21.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT32, or the value is not 1, then end with error

1.22. Action: MSG_GETCURRENT CAP_REACQUIREALLOWED

1.22.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

TWAIN 2.4 Specification 13-49

1.22.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.22.3. Action: MSG_RESET CAP_REACQUIREALLOWED

1.22.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.22.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.23. Action: MSG_GETCURRENT CAP_SEGMENTED

1.23.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.23.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWSG_NONE, then end with error

1.23.3. Action: MSG_RESET CAP_SEGMENTED

1.23.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.23.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWSG_NONE, then end with

error

1.24. Action: MSG_GETCURRENT CAP_TIMEBEFOREFIRSTCAPTURE

1.24.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.24.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.24.3. Action: MSG_RESET CAP_TIMEBEFOREFIRSTCAPTURE

1.24.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.24.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.25. Action: MSG_GETCURRENT CAP_TIMEBETWEENCAPTURES

1.25.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.25.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.25.3. Action: MSG_RESET CAP_TIMEBETWEENCAPTURES

1.25.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.25.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT32, or the value is not 0, then end with error

1.26. Action: MSG_GETCURRENT CAP_THUMBNAILSENABLED

1.26.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

Chapter 13

13-50 TWAIN 2.4 Specification

1.26.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.26.3. Action: MSG_RESET CAP_THUMBNAILSENABLED

1.26.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.26.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.27. Action: MSG_GETCURRENT CAP_XFERCOUNT

1.27.1. Test: If result is not TWRC_SUCCESS, then end with error

1.27.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT16, or the value is not -1, then end with error

1.27.3. Action: MSG_RESET CAP_XFERCOUNT

1.27.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.27.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT16, or the value is not -1, then end with error

1.28. Action: MSG_GETCURRENT ICAP_AUTOBRIGHT

1.28.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.28.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.28.3. Action: MSG_RESET ICAP_AUTOBRIGHT

1.28.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.28.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.29. Action: MSG_GETCURRENT ICAP_AUTODISCARDBLANKPAGES

1.29.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.29.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBP_DISABLED, then end with error

1.29.3. Action: MSG_RESET ICAP_AUTODISCARDBLANKPAGES

1.29.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.29.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBP_DISABLED, then end

with error

1.30. Action: MSG_GETCURRENT ICAP_AUTOMATICCOLORENABLED

1.30.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

TWAIN 2.4 Specification 13-51

1.30.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.30.3. Action: MSG_RESET ICAP_AUTOMATICCOLORENABLED

1.30.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.30.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.31. Action: MSG_GETCURRENT ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

1.31.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.31.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPT_BW, then end with error

1.31.3. Action: MSG_RESET ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

1.31.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.31.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPT_BW, then end with error

1.32. Action: MSG_GETCURRENT ICAP_AUTOMATICROTATE

1.32.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.32.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.32.3. Action: MSG_RESET ICAP_AUTOMATICROTATE

1.32.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.32.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.33. Action: MSG_GETCURRENT ICAP_AUTOSIZE

1.33.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.33.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWAS_NONE, then end with error

1.33.3. Action: MSG_RESET ICAP_AUTOSIZE

1.33.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.33.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWAS_NONE, then end with

error

1.34. Action: MSG_GETCURRENT ICAP_BARCODEDETECTIONENABLED

1.34.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

Chapter 13

13-52 TWAIN 2.4 Specification

1.34.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.34.3. Action: MSG_RESET ICAP_BARCODEDETECTIONENABLED

1.34.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.34.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.35. 1.35 Action: MSG_GETCURRENT ICAP_BITORDER

1.35.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.35.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBO_MSBFIRST, then end with error

1.35.3. Action: MSG_RESET ICAP_BITORDER

1.35.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.35.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBO_MSBFIRST, then end

with error

1.36. Action: MSG_GETCURRENT ICAP_BITORDERCODES

1.36.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.36.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBO_LSBFIRST, then end with error

1.36.3. Action: MSG_RESET ICAP_BITORDERCODES

1.36.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.36.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWBO_LSBFIRST, then end

with error

1.37. Action: MSG_GETCURRENT ICAP_BRIGHTNESS

1.37.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.37.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.37.3. Action: MSG_RESET ICAP_BRIGHTNESS

1.37.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.37.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.38. Action: MSG_GETCURRENT ICAP_CCITTKFACTOR

TWAIN 2.4 Specification 13-53

1.38.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.38.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not 4, then end with error

1.38.3. Action: MSG_RESET ICAP_CCITTKFACTOR

1.38.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.38.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not 4, then end with error

1.39. Action: MSG_GETCURRENT ICAP_COLORMANAGEMENTENABLED

1.39.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.39.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.39.3. Action: MSG_RESET ICAP_COLORMANAGEMENTENABLED

1.39.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.39.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.40. Action: MSG_GETCURRENT ICAP_COMPRESSION

1.40.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.40.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCP_COMPRESSION, then end with error

1.40.3. Action: MSG_RESET ICAP_COMPRESSION

1.40.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.40.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWCP_COMPRESSION, then end

with error

1.41. Action: MSG_GETCURRENT ICAP_CONTRAST

1.41.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.41.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.41.3. Action: MSG_RESET ICAP_CONTRAST

1.41.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.41.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.42. Action: MSG_GETCURRENT ICAP_EXTIMAGEINFO

Chapter 13

13-54 TWAIN 2.4 Specification

1.42.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.42.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.42.3. Action: MSG_RESET ICAP_EXTIMAGEINFO

1.42.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.42.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not TRUE, then end with error

1.43. Action: MSG_GETCURRENT ICAP_FILTER

1.43.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.43.2. Test: If the container is not TW_ARRAY, or the value is not an empty array,
then end with error

1.43.3. Action: MSG_RESET ICAP_FILTER

1.43.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.43.3.2. Test: If the container is not TW_ARRAY, or the value is not an

empty array, then end with error

1.44. Action: MSG_GETCURRENT ICAP_FLIPROTATION

1.44.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.44.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWFR_BOOK, then end with error

1.44.3. Action: MSG_RESET ICAP_FLIPROTATION

1.44.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.44.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWFR_BOOK, then end with

error

1.45. Action: MSG_GETCURRENT ICAP_GAMMA

1.45.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.45.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 2.2, then end with error

1.45.3. Action: MSG_RESET ICAP_GAMMA

1.45.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.45.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 2.2, then end with error

1.46. Action: MSG_GETCURRENT ICAP_HIGHLIGHT

TWAIN 2.4 Specification 13-55

1.46.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.46.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 255, then end with error

1.46.3. Action: MSG_REEST ICAP_HIGHLIGHT

1.46.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.46.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 255, then end with error

1.47. Action: MSG_GETCURRENT ICAP_IMAGEMERGE

1.47.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.47.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWIM_NONE, then end with error

1.47.3. Action: MSG_RESET ICAP_IMAGEMERGE

1.47.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.47.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWIM_NONE, then end with

error

1.48. Action: MSG_GETCURRENT ICAP_IMAGEMERGEHEIGHTTHRESHOLD

1.48.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.48.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.48.3. Action: MSG_GETCURRENT ICAP_IMAGEMERGEHEIGHTTHRESHOLD

1.48.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.48.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.49. Action: MSG_GETCURRENT ICAP_MIRROR

1.49.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.49.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWMR_NONE, then end with error

1.49.3. Action: MSG_RESET ICAP_MIRROR

1.49.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.49.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWMR_NONE, then end with

error

Chapter 13

13-56 TWAIN 2.4 Specification

1.50. Action: MSG_GETCURRENT ICAP_ORIENTATION

1.50.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.50.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWOR_PORTRAIT, then end with error

1.50.3. Action: MSG_RESET ICAP_ORIENTATION

1.50.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.50.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWOR_PORTRAIT, then end

with error

1.51. Action: MSG_GETCURRENT ICAP_OVERSCAN

1.51.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.51.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWOV_NONE, then end with error

1.51.3. Action: MSG_RESET ICAP_OVERSCAN

1.51.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.51.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWOV_NONE, then end with

error

1.52. Action: MSG_GETCURRENT ICAP_PATCHCODEDETECTIONENABLED

1.52.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.52.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.52.3. Action: MSG_RESET ICAP_PATCHCODEDETECTIONENABLED

1.52.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.52.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.53. Action: MSG_GETCURRENT ICAP_PIXELFLAVOR

1.53.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.53.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with error

1.53.3. Action: MSG_RESET ICAP_PIXELFLAVOR

1.53.3.1. Test: If result is not TWRC_SUCCESS, then end with error

TWAIN 2.4 Specification 13-57

1.53.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end

with error

1.54. Action: MSG_GETCURRENT ICAP_PIXELFLAVORCODES

1.54.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.54.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with error

1.54.3. Action: MSG_RESET ICAP_PIXELFLAVORCODES

1.54.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.54.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end

with error

1.55. Action: MSG_GETCURRENT ICAP_ROTATION

1.55.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.55.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.55.3. Action: MSG_RESET ICAP_ROTATION

1.55.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.55.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.56. Action: MSG_GETCURRENT ICAP_SHADOW

1.56.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.56.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.56.3. Action: MSG_RESET ICAP_SHADOW

1.56.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.56.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 0, then end with error

1.57. Action: MSG_GETCURRENT ICAP_THRESHOLD

1.57.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.57.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 128, then end with error

1.57.3. Action: MSG_RESET ICAP_THRESHOLD

Chapter 13

13-58 TWAIN 2.4 Specification

1.57.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.57.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 128, then end with error

1.58. Action: MSG_GETCURRENT ICAP_TILES

1.58.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.58.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.58.3. Action: MSG_RESET ICAP_TILES

1.58.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.58.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.59. Action: MSG_GETCURRENT ICAP_TIMEFILL

1.59.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.59.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not 1, then end with error

1.59.3. Action: MSG_RESET ICAP_TIMEFILL

1.59.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.59.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not 1, then end with error

1.60. Action: MSG_GETCURRENT ICAP_UNDEFINEDIMAGESIZE

1.60.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.60.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.60.3. Action: MSG_RESET ICAP_UNDEFINEDIMAGESIZE

1.60.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.60.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_BOOL, or the value is not FALSE, then end with error

1.61. Action: MSG_GETCURRENT ICAP_UNITS

1.61.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.61.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWUN_INCHES, then end with error

1.61.3. Action: MSG_RESET ICAP_UNITS

TWAIN 2.4 Specification 13-59

1.61.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.61.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not TWUN_INCHES, then end with

error

1.62. Action: MSG_GETCURRENT ICAP_XFERMECH

1.62.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.62.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not -1, then end with error

1.62.3. Action: MSG_RESET ICAP_XFERMECH

1.62.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.62.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_UINT16, or the value is not -1, then end with error

1.63. Action: MSG_GETCURRENT ICAP_XSCALING

1.63.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.63.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 1, then end with error

1.63.3. Action: MSG_RESET ICAP_XSCALING

1.63.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.63.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 1, then end with error

1.64. Action: MSG_GETCURRENT ICAP_YSCALING

1.64.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.64.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 1, then end with error

1.64.3. Action: MSG_RESET ICAP_YSCALING

1.64.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.64.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_FIX32, or the value is not 1, then end with error

1.65. Action: MSG_GETCURRENT ICAP_ZOOMFACTOR

1.65.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.65.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT16, or the value is not 0, then end with error

1.65.3. Action: MSG_RESET ICAP_ZOOMFACTOR

Chapter 13

13-60 TWAIN 2.4 Specification

1.65.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.65.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not

TWTY_INT16, or the value is not 0, then end with error

	TWAIN_Self_Certification_Process_for_Data_Sources_2.4
	Certification_Chapter 13_v2.4

